Base excision DNA repair and cancer
نویسندگان
چکیده
Transformed cells can develop drug resistance via repair mechanisms that counteract the DNA damage from chemotherapy or radiation therapy. Disruption of DNA repair pathways can cause mis-repair that is cytotoxic [1]. Specific DNA repair inhibitors might thus be combined with DNA-damaging agents for improved therapy. In addition, some cancer cells have a reduced repertoire of DNA damage responses, which provides other therapeutic openings. Recent studies show that many DNA repair proteins are associated with those involved in RNA metabolism and transcriptional regulation, including within the nucleolus [2]. The base excision DNA repair (BER) pathway handles simple alkylation and oxidative lesions arising from both endogenous and exogenous sources, including cancer therapy agents. The core BER enzyme Ape1 also contributes to the regulation of oxidative stress responses and has other non-repair activities, such as regulating the expression of chemoresistance genes (i.e. MDR1) [3]. Ape1 is thus an emerging target for combination therapy of different cancers. Ape1 can function as a " redox factor " [1] that stimulates DNA binding by transcription factors involved in cancer promotion and progression, such as NF-ĸB, Egr-1, Hif-1α, Nrf1 [3], thus influencing inflammatory and metastatic processes. A third poorly characterized Ape1 function is its transcriptional activity on genes such as SIRT1 and those encoding some mitochondrial proteins (Tfam, Cox6c, and Tomm22) [2]. Moreover, Ape1 regulates the expression of tumor-progression and therapy-resistance genes through transcriptional effects (on the VEGF and MDR1 genes, for example) and post-transcriptional mechanisms through direct mRNA binding by Ape1 (e.g. c-Myc) [3]. These observations prompt a new model that links DNA damage responses and the modulation of target genes, which may provide chemoresistance during tumor development. Cancer-associated Ape1 variants are often altered in the protein's DNA repair domain, with some exhibiting nuclease defects in vitro [4]. Up-regulation of Ape1 correlates with the onset of chemoresistance in ovarian, hepatic and neurologic tumors, while inhibition of the protein with small compounds, or the downregulation of its expression, sensitizes cells to DNA-damaging chemotherapeutic drugs and ionizing radiation [3]. Which Ape1 activity is involved in cancer development or chemoresistance remains unknown. We discovered a function of Ape1 in rRNA metabolism involving direct rRNA binding and interaction with NPM1, which is required for retaining Ape1 in the nucleolus. A role in rRNA metabolism may explain the altered Ape1 expression observed in different tumors [3]. Although knowledge of Ape1's possible function in the nucleolus is incomplete, the protein retained there …
منابع مشابه
Dysregulated Expression and Sub cellular Localization of Base Excision Repair (BER) Pathway Enzymes in Gallbladder Cancer
Base excision repair (BER) pathway is one of the repair systems that have an impact on the radiotherapy and chemotherapy for the cancer patients. The molecular pathogenesis of gallbladder cancer is not known extensively. In the present study we investigated whether the expression of AP endonuclease 1 (APE1) and DNA polymerase β (DNA pol β), key enzymes of BER pathway has any clinical ...
متن کاملBase excision repair targets for cancer therapy.
Cellular DNA repair is a frontline system that is responsible for maintaining genome integrity and thus preventing premature aging and cancer by repairing DNA lesions and strand breaks caused by endogenous and exogenous mutagens. However, it is also the principal cellular system in cancer cells that counteracts the killing effect of the major cancer treatments e.g. chemotherapy and ionizing rad...
متن کاملDNA Base Excision Repair: Evolving Biomarkers for Personalized Therapies in Cancer
DNA repair is critical for maintaining genomic integrity. The DNA damage such as those induced by endogenous processes (methylation, hydroxylation, oxidation by free radicals) or by exogenous agents such as ionizing radiation, environmental toxins, and chemotherapy is processed through the DNA repair machinery in cells. At least six distinct DNA repair pathways have been described. A detailed d...
متن کاملThe Impact of Hedgehog Signaling Pathway on DNA Repair Mechanisms in Human Cancer
Defined cellular mechanisms have evolved that recognize and repair DNA to protect the integrity of its structure and sequence when encountering assaults from endogenous and exogenous sources. There are five major DNA repair pathways: mismatch repair, nucleotide excision repair, direct repair, base excision repair and DNA double strand break repair (including non-homologous end joining and homol...
متن کاملBase excision repair fidelity in normal and cancer cells.
In mammalian cells, base excision repair (BER) is the major repair pathway involved in the removal of non-bulky damaged nucleotides. The fidelity of BER is dependent on the polymerization step, where the major BER DNA polymerase (Pol beta) must incorporate the correct Watson-Crick base paired nucleotide into the one nucleotide repair gap. Recent studies have indicated that expression of some Po...
متن کاملSmall-molecule inhibitors of proteins involved in base excision repair potentiate the anti-tumorigenic effect of existing chemotherapeutics and irradiation.
There has been a recent upsurge in the development of small-molecule inhibitors specific to DNA repair proteins or proteins peripherally involved in base excision repair and the DNA damage response. These specific, nominally toxic inhibitors are able to potentiate the effect of existing cancer cell treatments in a wide array of cancers. One of the largest obstacles to overcome in the treatment ...
متن کامل